

MBS-01

Seat No.

M. Phil. (Sem. II) (CBCS) Examination

		April / May - 2018			
	Mathematics: CMT - 20001				
		(Topology)			
Time	: 3	Hours] [Total Marks : 100			
Instr	cuct	ions:			
	(1)	There are five questions in this paper.			
	(2)	All questions are compulsory .			
1	Fill	in the blanks: (Each question carries two marks) 14			
	(a)	If $f:X \to \mathbb{R}$ is a continuous function then f^1 ({1}) is			
		a set.			
	(b)	If I is a Z - ideal which contains a prime ideal then I			
		is a ideal.			
	(c)	Every maximal ideal in $C^*(\mathbb{N})$ contains the			
		function $j(n)$.			
	(d)	In a normal space X every subset is C-embedded			
		in X .			
	<i>(</i>)				

- In $C(\mathbb{N})$ every ideal is a _____ ideal. (e)
- If A and B are completely separated in X then A and (f) B are contained in disjoint _____ sets.
- (g) The space of natural numbers is _____ embedded in its Stone - Cech compactification.

2	Attempt any three of the following:		
	a)	Prove that an ideal M is a maximal ideal if and only if $Z(M)$ is a Z -ultra filter.	
	b)	State and prove the necessary and sufficient condition under which a subspace S of X is C^* - embedded in X .	
I	c)	i) Give an example of an ideal in $C(X)$ which is a Z - ideal.	
		ii) Prove for any ideal I, Z^{-1} (Z (I)) is a Z - ideal.	
ı	d)	Prove that countable intersection of a zero sets is a zero set.	
3	All a	are compulsory:	24
	a)	Let $I = \{f \in C(\mathbb{R}) : Z(f) \text{ is a neibhbourhood of 0} \}.$ Show that I is a Z -ideal and it is not the intersection of maximal ideals containing it.	8
	b)	Give an example of an ideal in $C^*(\mathbb{N})$ which is	6
		not the intersection of any ideal of $C(\mathbb{N})$ with $C^*(\mathbb{N})$.	
	c)	Suppose I is a Z -ideal which contains a prime	5
		ideal. Prove that I is a prime ideal in $C(X)$.	
	d)	Prove that in a compact space every z-filter has a cluster point.	5
		OR	
3	All a	are compulsory:	24
	a)	Let X be a compact Hausdorff space.	8
		i) Prove that the closure of an ideal I in $C(X)$ is an ideal in $C(X)$.	
		ii) Prove that every maximal ideal in $C(X)$ is closed. $[C(X)=$ the Banach algebra of all complex valued continuous functions on X].	
MBS-	-01]	2 [Cont	d

- b) Prove that two sets are completely separated in X if $\mathbf{5}$ and only if they are contained in disjoint zero sets of X.
- c) Prove that every prime ideal of C(X) is contained in a unique maximal ideal of C(X).
- d) Prove that $\beta(X)$ is disconnected if and only if X is disconnected.

4 Attempt any **three** of the following:

24

- a) Prove that a space X is compact if and only if every maximal ideal in $C^*(X)$ is fixed.
- b) Suppose X is a dense subspace of T and X is C^* embedded in T. Prove that
 - i) If Z_1 and Z_2 are disjoint zero sets in X then Cl_T (Z_1) and Cl_T (Z_2) are disjoint.
 - ii) If Z_1 and Z_2 are zero sets in X then $Cl_T(Z_1 \cap Z_2)$ = $Cl_T(Z_1) \cap Cl_T(Z_2)$.
- c) Let C(X) be the banach algebra of all complex valued continuous functions defined on a compact hausdorff space X. Prove that there is a one-one correspondence between the non-empty closed subsets of X and closed ideals of C(X).
- d) Prove that a subset S of \mathbb{R} is C-embedded in \mathbb{R} if and only if it is a zero set of \mathbb{R} .

5 Do as directed: (Each question carries two marks) 14

- a) Give reasons why \mathbb{R} $\{0\}$ is not a zero set.
- b) Give a continuous function $f: \mathbb{R} \to \mathbb{R}$ for which Z(f) is a countable infinite set.

MBS-01] 3 [Contd...

- c) Suppose $f \in C(X)$ and $A = \{x \in X \mid f(x) > \frac{1}{2}\}$. Is A zero set? Give reason.
- d) Suppose f(x) = x for all x in \mathbb{R} . Let I be the principal ideal generated by f(x). Give a function g in C(X) such that $g \in Z^{-1}(Z(I))$ but $g \notin I$.
- e) Give the definition of a compactification of a space *X* and give the characteristic property of the Stone Cech compactification of *X*.
- f) Give an example of a free maximal ideal in $C(\mathbb{N})$.
- g) Give a continuous function $f: \mathbb{N} \to \mathbb{R}$ such that f cannot be extended to a continuous function $g: \beta(\mathbb{N}) \to \mathbb{R}$.

MBS-01 [50 / 5]